
Part A [5 points]

For each of these concepts, indicate the **generation** in which it was **first used** and to which history (**hardware** or **software**) it belongs.

machine language	1	hardware / software
magnetic cores	2	hardware / software
Object-Oriented Design	5	hardware / software
transistors	2	hardware / software
word processors	4	hardware / software

Part B [1 point] – Join the Dots

The dots below are labelled in **2's Complement** notation. The labels are to the left of the dots. Connect the dots that have **negative** numbers as labels. Start with the smallest value and proceed to the largest.

Part C [6 points] – Complete the table.

Show how the pattern **01101000** translates using each of the following interpretations. [1 each]

unsigned integer	104
integer in 2's complement notation	+104
integer in excess notation	-24
Hexadecimal notation	68
floating point notation	+2
ASCII	h

Part D [8 points]

- 1) Perform the following calculation in Binary: [1] 0001.0001 +0010.0011 0011.0100
- 2) Express the answer for 1) as a **proper fraction**. [1] $3\frac{1}{4}$
- 3) Show how this value would be coded in 8-bit Floating Point Notation. [1] 01101101
- 4) Show an **optimised** calculation for the following binary multiplication. Show all your steps. [5]

27 * 34

27 * 34 can be expressed as 27 converts to	27 * (2 + 32) 11011	1 1
27 * 2 =	110110	1
27 * 32 =	1101100000	1
27 * 32 + 27 * 4 =	1110010110	1

Part E [10 points] - Short!! Answer

1. If the "*" is the flag character in run-length encoding, how would the following string be decoded?

*W7*56SOS*N4 WWWWWW555555SOSNNNN

2. What compression ratio was achieved by encoding the string? 12/20 or .60 or 60%

3. Use the following Huffman alphabet to encode the string. $e=00\ t=1111\ s=110\ h=1110\ r=01\ a=100\ c=101$

"carts" 101100011111110

- 4. ______ uses short patterns to represent common characters and longer patterns to represent characters less frequently used.
 - a) Huffman encoding
 - b) keyword encoding
 - c) run length encoding
 - d) spatial compression
 - e) temporal compression
- 5. A continuous representation, corresponding to the actual information it represents.
 - a) analog data
 - b) digital data
- 6. Some information may be discarded in the process of compression.
 - a) lossless
 - b) lossy

7. The process of correcting degradation to digital data is called ______.

- a) digitizing
- b) encoding
- c) pulse-code modulation
- d) re-clocking
- e) sampling

8. What is the term that refers to the number of pixels used to represent an image? resolution

9. _____ describes an image in terms of the colour of each picture element. raster graphics

10. If an image's size is 600 X 500 pixels, and the colour is stored in 24 bits, how many **bytes** of memory are needed to store the image without compression?

600 * 500 = 300,000 pixels * 3 bytes/pixel = 900,000 bytes

Part F [6 points]

- 1. Which Excel function can be used to calculate the total of a list?
 - a) AVERAGE
 - b) MAX
 - c) MEDIAN
 - d) MIN
 - e) <mark>SUM</mark>

2. Which of the following is not a function category in Excel?

- a) Date & Time
- b) Information
- c) Math & Trig
- d) Random
- e) Text

3. A worksheet that contains values that are constant throughout the model would usually be called:

- a) Comments
- b) Graph
- c) Main Data
- d) Parameters
- e) Summary

4. A column in an Excel worksheet named Letter Grade contains the formula

=IF(Score<80,"B",IF(Score<70,"C",IF(Score<60,"D",IF(Score<50,"F","A"))))

What will appear in Letter Grade when Score is 91?

a) A	b) B	c) C
d) D	e) F	

- 5. Referring to the formula in the previous question, what will appear in Letter Grade when Score is 55?
 a) A
 b) B
 c) C
 d) D
 e) F
- 6. A company decides to give some of its employees a holiday bonus. Those who have been employed at the company for at least 10 years get a bonus if their performance is considered either *good* or *excellent*. Those who have not been employed at the company that long get a bonus only if their performance is considered *excellent*. Assume the columns are named as shown.

Years	Rating	Bonus
3	excellent	YES
15	poor	NO
12	acceptable	NO
2	good	NO
10	good	YES

Which formula could have been used to calculate the values in the **Bonus** column.

- a) =IF(OR(AND(Years<10, Rating="good"),Rating="excellent"),"YES","NO")
- b) =IF(OR(AND(Years>=10, Rating="good"),Rating="excellent"),"YES","NO")
- c) =IF(Rating="good" AND IF (Years>=10," YES "," NO"))
- d) =IF(Rating>="good",IF(Years>=10,"YES", "NO"),"NO"))
- e) =IF(Years>=10 AND (Rating>="good"),"Yes","No")

Part G [10 points]

This partial worksheet generates random Moves for playing Rock/paper/Scissors.

RandomNum	0	2	2	0	1
Move	Rock	Scissors	Scissors	Rock	Paper

 RandomNum is a randomly generated integer: 0, 1, or 2. Write a single Excel formula to create the values of RandomNum. [3]

=<u>INT(RAND() * 3)</u>

Move is Rock when RandomNum is 0, Paper when RandomNum is 1, and Scissors otherwise.
 Write a single Excel formula to display the appropriate Moves. [7]

=<u>IF(RandomNum=1, "Rock", IF(RandomNum=2, "Paper", "Scissors")</u>)

Part H [4 points]

All ranges have been named.

Lower bound	Letter Grade
0	F
40	E
50	D
55	D+
60	С
65	C+
70	В
75	B+
80	А
90	A+

Score	Grade
40	E
61	С
44	E
52	D
33	F
69	C+
57	D+
33	F
64	С
55	D+

Use this table to assign a **Grade** for each **Score**.

This is a partial list of **Score**s showing the appropriate **Grade** for each.

Write the formula for the **Grade** column.

=LOOKUP(<u>Score</u>, <u>Lower_bound</u>, <u>Letter_Grade</u>)