\qquad

Part A [5 points]

For each of these concepts, indicate the generation in which it was first used and to which history (hardware or software) it belongs.
machine language
magnetic cores
Object-Oriented Design
transistors
word processors
\qquad 1 hardware / software
_2 hardware / software
_ 5 hardware / software
__ 2 hardware / software
_ 4 hardware / software

Part B [1 point] - Join the Dots

The dots below are labelled in 2's Complement notation. The labels are to the left of the dots. Connect the dots that have negative numbers as labels.
Start with the smallest value and proceed to the largest.

Part C [6 points] - Complete the table.

Show how the pattern 01101000 translates using each of the following interpretations. [1 each]

unsigned integer	104
integer in 2's complement notation	+104
integer in excess notation	-24
Hexadecimal notation	68
floating point notation	+2
ASCII	h

Part D [8 points]

1) Perform the following calculation in Binary: [1]
0001.0001
$+0010.0011$
0011.0100
2) Express the answer for 1) as a proper fraction. [1] 3 $\frac{1}{4}$
3) Show how this value would be coded in 8-bit Floating Point Notation. [1] 01101101
4) Show an optimised calculation for the following binary multiplication. Show all your steps. [5]

27 * 34

27 * 34 can be expressed as
27 converts to
27 * $2=$
27 * $32=$
$27 * 32+27 * 4=$
$27 *(2+32) \quad 1$
$11011 \quad 1$
110110
$1101100000 \quad 1$
$1110010110 \quad 1$

```111
```


Part E [10 points] - Short!! Answer

1. If the "*" is the flag character in run-length encoding, how would the following string be decoded?
*W7*56SOS*N4
WWWWWWW555555SOSNNNN
2. What compression ratio was achieved by encoding the string?
$12 / 20$ or .60 or 60%
3. Use the following Huffman alphabet to encode the string.
$e=00 \quad t=1111 \quad s=110 \quad h=1110 \quad r=01 \quad a=100 \quad c=101$
"carts"
101100011111110
4. \qquad uses short patterns to represent common characters and longer patterns to represent characters less frequently used.
a) Huffman encoding
b) keyword encoding
c) run length encoding
d) spatial compression
e) temporal compression
5. A continuous representation, corresponding to the actual information it represents.
a) analog data
b) digital data
6. Some information may be discarded in the process of compression.
a) lossless
b) lossy
7. The process of correcting degradation to digital data is called \qquad .
a) digitizing
b) encoding
c) pulse-code modulation
d) re-clocking
e) sampling
8. What is the term that refers to the number of pixels used to represent an image?
resolution
9. \qquad describes an image in terms of the colour of each picture element. raster graphics
10. If an image's size is 600×500 pixels, and the colour is stored in 24 bits, how many bytes of memory are needed to store the image without compression?
$600 * 500=300,000$ pixels $* 3$ bytes/pixel $=900,000$ bytes

Part F [6 points]

1. Which Excel function can be used to calculate the total of a list?
a) AVERAGE
b) MAX
c) MEDIAN
d) MIN
e) SUM
2. Which of the following is not a function category in Excel?
a) Date \& Time
b) Information
c) Math \& Trig
d) Random
e) Text
3. A worksheet that contains values that are constant throughout the model would usually be called:
a) Comments
b) Graph
c) Main Data
d) Parameters
e) Summary
4. A column in an Excel worksheet named Letter Grade contains the formula
=IF(Score<80,"B",IF(Score<70,"C",IF(Score<60,"D",IF(Score<50,"F","A"))))

What will appear in Letter Grade when Score is 91 ?
a) A
b) B
c) C
d) D
e) F
5. Referring to the formula in the previous question, what will appear in Letter Grade when Score is 55 ?
a) A
b) B
c) C
d) D
e) F
6. A company decides to give some of its employees a holiday bonus. Those who have been employed at the company for at least 10 years get a bonus if their performance is considered either good or excellent. Those who have not been employed at the company that long get a bonus only if their performance is considered excellent. Assume the columns are named as shown.

Years	Rating	Bonus
3	excellent	YES
15	poor	NO
12	acceptable	NO
2	good	NO
10	good	YES

Which formula could have been used to calculate the values in the Bonus column.
a) $=\mathrm{IF}(\mathrm{OR}(\mathrm{AND}($ Years<10, Rating="good"),Rating="excellent"),"YES","NO")
b) $=\mathrm{IF}($ OR(AND(Years>=10, Rating="good"),Rating="excellent"),"YES","NO")
c) $=$ IF(Rating="good" AND IF (Years>=10," YES "," NO"))
d) $=\mathrm{IF}($ Rating>="good",IF(Years>=10,"YES", "NO"),"NO"))
e) $=$ IF(Years>=10 AND (Rating>="good"),"Yes","No")
\qquad

Part G [10 points]

This partial worksheet generates random Moves for playing Rock/paper/Scissors.

RandomNum	0	2	2	0	1
Move	Rock	Scissors	Scissors	Rock	Paper

1. RandomNum is a randomly generated integer: 0,1 , or 2. Write a single Excel formula to create the values of RandomNum. [3]
$=\underline{I N T}(\underline{R A N D}() * 3)$
2. Move is Rock when RandomNum is 0, Paper when RandomNum is 1, and Scissors otherwise.
Write a single Excel formula to display the appropriate Moves. [7]
=IF(RandomNum=1, "Rock", IF(RandomNum=2, "Paper", "Scissors"))

Part H [4 points]

All ranges have been named.

Lower bound	Letter Grade
0	F
40	E
50	D
55	$\mathrm{D}+$
60	C
65	$\mathrm{C}+$
70	B
75	$\mathrm{~B}+$
80	A
90	$\mathrm{~A}+$

Score	Grade
40	E
61	C
44	E
52	D
33	F
69	$\mathrm{C}+$
57	$\mathrm{D}+$
33	F
64	C
55	$\mathrm{D}+$

Use this table to assign a Grade for each Score.
This is a partial list of Scores showing the appropriate Grade for each.

Write the formula for the Grade column.
$=$ LOOKUP (Score, Lower bound, Letter Grade)

